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Thin-film  transistors  (TFTs)  based  on  oxide  semiconduct-
ors  have gained a lot  of  attention in applications such as dis-
plays  and  sensors  particularly  in  recent  years  due  to  the  ad-
vantages of oxide semiconductors like high mobility, good uni-
formity  over  large  area  and  low  deposition  temperature[1−4].
However, the defects/traps at dielectric/channel interface and
top  surface  of  oxide  TFTs  might  dramatically  degrade  device
performance  including  current  on/off  ratio,  mobility  and
most  importantly  stability[5, 6],  making  it  quite  urgent  to  sys-
tematically  make  effective  interface  engineering  to  improve
TFT performance.

Traps  on  the  top  channel  surface  are  mainly  caused  by
the  adsorbed  water  and  oxygen  molecules  from  air[7],  which
could be reduced by applying a passivation layer.  One effect-
ive  passivation  layer  is  organic  self-assembled  monolayer
(SAM),  which  can  be  formed  densely  on  the  surface  of  oxide
semiconductors through the reaction with –OH groups, ensur-
ing a  reliable  interface coupling between SAM and the chan-
nel  layer  and  hence  a  good  chemical  stability[5, 8].  Compared
with  conventional  inorganic  passivation  layers,  SAMs  can  be
easily  applied  on  the  top  channel  surface via vapor-  or  solu-
tion-based  methods[8−10],  which  are  plasma-free  processes
and can avoid the potential plasma damage to oxide semicon-
ductors.

SAMs with different functional groups might give very dif-
ferent  surface  energy  and  dramatically  affect  the  resulting
device performance, especially the stability and hysteresis. Re-
cently,  Kim et  al.  investigated  InGaZnO  (IGZO)  TFTs  treated
by SAMs with CH3, NH2 and CF3 functional groups, namely tri-
methoxy(propyl)silane  (TPS),  (3-aminopropyl)trimethoxysil-
ane (APTMS), and trimethoxy(3,3,3-trifluoropropyl)silane (TFP)
SAMs,  respectively,  as  shown  in  the  insets  of Fig.  1(a)[11].  The
untreated IGZO film shows a  contact  angle  of  22.5°,  after  the
treatment,  it  changes  to  55.2°  ±  1.7°,  81.9°  ±  2.1°  and 98.1°  ±
2.3°  for  APTMS,  TPS,  and TFP treated IGZO films,  respectively,
suggesting  a  reduced  surface  energy.  Such  a  reduced  sur-
face energy makes oxygen molecules being difficult to be ad-
sorbed on the surface of the treated IGZO films. As a result,  a
decrease  of  both  clockwise  hysteresis  and  threshold  voltage
shift  under  the  positive  bias  was  observed  after  the  treat-
ment with a lowest value of 0.11 ± 0.06 V and 0.32 ± 0.26 V, re-

spectively, achieved in TFP-treated IGZO TFTs (the lowest sur-
face energy case), as shown in Fig. 1(a).

Alkyl  chain lengths also affect  device performance,  as  re-
ported  by  Peng et  al. who  studied  the  relationship  between
SAM  chain  lengths  and  TFT  performance  by  using  triethoxy-
silane  (TES)  with  three  different  alkyl  chains,  namely  C1-TES,
C8-TES  and  C18-TES[12].  All  treated  devices  show  an  in-
creased  mobility  and  a  decreased  hysteresis  compared  with
the  untreated  one.  Among  all  treated  devices,  TFTs  treated
with  C18-TES  showed  best  performance  with  a  mobility  of
26.6  cm2/(V·s),  which  might  be  due  to  the  formation  of  a
well-ordered  and  more  hydrophobic  IGZO  surface  when
treated  with  SAMs  with  longer  alkyl  chains.  Similar  effects
were  also  reported  by  Chen et  al. in  InSnZnO  TFTs  treated
with vapor-phase SAMs[9].

At smaller channel thicknesses, the accumulation layer ap-
proaches near the adsorbed water molecules on the top chan-
nel  surface,  inducing  a  strong  carrier  scattering  and  a  more
pronounced  influence  of  top  surface.  To  study  whether  the
SAM  treatment  also  works  in  TFTs  with  a  thin  channel  layer,
Song et  al. made  n-octadecyltrichlorosilane  (OTS)-treated
IGZO  TFTs  with  different  IGZO  thicknesses[8].  As  shown  in
Fig.  1(b),  even  at  an  IGZO  thickness  down  to  5  nm,  the
treated  devices  show  a  high  mobility  of 10  cm2/(V·s)  with  a
low  subthreshold  swing  of  64  mV/dec  and  a  high  current
on/off  ratio larger than 106.  Also,  the device maintains a high
performance even after being stored in air for a year (Fig. 1(c)),
indicating  that  the  top  surface  has  been  effectively  passiv-
ated.

Besides  being  used  as  an  effective  passivation  layer  on
the  top  surface  of  oxide  TFTs,  SAMs  can  also  be  applied  at
the  dielectric/channel  interface,  which  affects  not  only  the
dynamic  performance  but  also  the  stability.  SAM  treatment
is  now  a  standard  process  in  organic  TFTs  to  reduce  dielec-
tric/channel  interface  traps  and  surface  energy,  but  was  sel-
dom  reported  in  oxide  TFTs  due  to  the  potential  damage  to
SAMs.  By  treating  AlOx gate  dielectrics  with  an  n-octadecyl-
phosphonic  acid (ODPA),  Bashir et  al. reported high-perform-
ance ZnO TFTs made by spray pyrolyzing[13]. To study the sur-
vival  of  ODPA  after  the  high-temperature  ZnO  deposition,
they  performed  a  contact  angle  measurement,  and  found
that  a  high contact  angle maintained even after  a  heat  treat-
ment of the sample at 400–450 °C in N2 (Fig. 2(a)), demonstrat-
ing  the  high  stability  of  the  ultra-thin  SAM  against  heat.  The
SAM treatment here significantly reduces the gate leakage cur-
rent,  and  as  a  result,  the  devices  show  a  low  operating
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voltage of 1.5 V with a current on/off ratio of 103 and a mobil-
ity of 8.3 cm2/(V·s) (Fig. 2(b)).

However,  for  commercialization,  high-performance  ox-
ide  semiconductors  are  still  mainly  deposited  by  sputtering.
To study the effectiveness of a SAM treatment on gate dielec-
trics  in  TFTs  with  a  sputtered  channel  layer,  in  2020,  Song
et al. prepared OTS-treated AlxOy and HfOx as the gate dielec-
trics  in  sputtered  IGZO  TFTs[14].  Surprisingly,  they  found  that
by carefully controlling the sputtering condition, a reduced in-
terface  trap  density  and  hence  an  enhanced  device  perform-
ance  could  be  realized.  Under  optimized  conditions,  the
devices  exhibit  a  more  than two-fold  increase  of  mobility,  an
increase  of  current  on/off  ratio  by  ~100  times  and  a  reduc-
tion of  trap density  by >50% (Fig.  2(c)).  The bias  stress  stabil-
ity  of  the  TFTs  also  showed  a  substantial  improvement  after
the OTS treatment (Fig. 2(d)), mainly due to the significantly re-
duced  interface  trap  density,  demonstrating  the  potential  of
the method in manufacturing display back plane drivers.

In summary, the SAM treatment, as a simple and yet effect-
ive interface engineering method, gains wide attention in ox-
ide TFTs not  only  on the top surface but  most  importantly  at
the dielectric/channel interface. To make this method a stand-
ard process in the manufacture of low-cost, oxide-based elec-
tronic  devices,  it  is  necessary  to  further  study  the  large-area
compatibility as this method may require scrupulously choos-
ing  SAMs  and  carefully  controlling  the  deposition  condition.
Further  enhancement  in  device  performance  could  be  real-
ized  through  the  combination  of  the  treatments  at  both  top
surface and dielectric/channel interface. 
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Fig. 1. (Color online) (a) Transfer characteristics of IGZO TFTs treated with different SAMs under positive bias stress. Insets show the chemical struc-
tures  of  SAM  molecules.  Reproduced  with  permission[11],  Copyright  2021,  IOP  Publishing.  (b)  Transfer  characteristics  of  IGZO  TFTs  with  and
without OTS treatment. (c) OTS-treated IGZO TFTs before and after being stored in air for a year. Reproduced with permission[8], Copyright 2021,
American Chemical Society.
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Fig. 2. (Color online) (a) Chemical structure of ODPA and contact angles of AlOx, SAM-treated AlOx before and after annealing. (b) Transfer charac-
teristics of ZnO TFTs. Reproduced with permission[13],  Copyright 2021, Wiley-VCH. (c) Transfer characteristics of IGZO TFTs with bare AlxOy and
OTS-treated AlxOy as gate dielectrics. (d) Transfer characteristics of IGZO TFTs with bare HfOx and OTS-treated HfOx under positive bias stress. Re-
produced with permission[14], Copyright 2021, Wiley-VCH.
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